5 research outputs found

    EO-Alert: A Satellite Architecture for Detection and Monitoring of Extreme Events in Real Time

    Get PDF
    This paper presents the architecture and results achieved by the EO-ALERT H2020 project. EO-ALERT proposes the definition and development of the next-generation Earth Observation (EO) data processing chain, based on a novel flight segment architecture that moves optimised key EO data processing elements from the ground segment to onboard the satellite, with the aim of delivering the EO products to the end user with very low latency (in almost real-time). This paper presents the EO-ALERT architecture, its performance and hardware. Performances are presented for two reference user scenarios; ship detection and extreme weather nowcasting/monitoring. The hardware testing results show that, when implemented using Commercial Off-The-Shelf (COTS) components and available communication links, the proposed architecture can deliver EO products and alerts to the end user with a latency lower than one-point-five minutes, for both SAR and Optical Very High Resolution (VHR) missions, demonstrating the viability of the EO-ALERT concept and architecture

    Advanced Data Chain Technologies for the Next Generation of Earth Observation Satellites Supporting On-Board Processing for Rapid Civil Alerts

    Get PDF
    The growing number of planned Earth Observation (EO) satellites, together with the increase in payload resolution and swath, brings to the fore the generation of unprecedented volumes of data that needs to be downloaded, processed and distributed with low latency. This creates a severe bottleneck problem, which overloads ground infrastructure, communications to ground, and hampers the provision of EO products to the End User with the required performances. The EO-ALERT project (http://eo-alert-h2020.eu/), an H2020 European Union research activity, proposes the definition of next-generation EO missions by developing an on-board high speed EO data processing chain, based on a novel flight segment architecture that moves optimised key EO data processing elements from the ground segment to on-board the satellite. EO-ALERT achieves, globally, latencies below five minutes for EO products delivery, reaching latencies below 1 minute in some scenarios. The proposed architecture solves the above challenges through a combination of innovations in the on-board elements of the data chain and the communications link. Namely, the architecture introduces innovative technological solutions, including on-board reconfigurable data handling, on-board image generation and processing for generation of alerts (EO products) using Artificial Intelligence (AI), high-speed on-board avionics, on-board data compression and encryption using AI and reconfigurable high data rate communication links to ground including a separate chain for alerts with minimum latency and global coverage. Those key technologies have been studied, developed, implemented in software/hardware (SW/HW) and verified against previously established technologies requirements to meet the identified user needs. The paper presents the development of the innovative solutions defined during the project for each of the above mentioned technological areas and the results of the testing campaign of the individual SW/HW implementations within the context of two operational scenarios: ship detection and extreme weather observation (nowcasting), both requiring a high responsiveness to events to reduce the response time to few hours, or even to minutes, after an emergency situation arises. The technologies have been experimentally evaluated during the project using relevant EO historical sensor data. The results demonstrate the maturity of the technologies, having now reached TRL 4-5. Generally, the results show that, when implemented using COTS components and available communication links, the proposed architecture can generate alerts with a latency lower than five minutes, which demonstrates the viability of the EO-ALERT concept. The paper also discusses the implementation on an Avionic Test Bench (ATB) for the validation of the integrated technologies chain

    EO-ALERT: A Novel Architecture for the Next Generation of Earth Observation Satellites Supporting Rapid Civil Alerts

    Get PDF
    Satellite Earth Observation (EO) data is ubiquitously used in many applications, providing basic services to society, such as environment monitoring, emergency management and civilian security. Due to the increasing request of EO products by the market, the classical EO data chain generates a severe bottleneck problem, further exacerbated in constellations. A huge amount of EO raw data generated on-board the satellite must be transferred to ground, slowing down the EO product availability, increasing latency, and hampering the growth of applications in accordance with the increased user demand. This paper provides an overview of the results achieved by the EO-ALERT project (http://eo-alert-h2020.eu/), an H2020 European Union research activity led by DEIMOS Space. EO-ALERT proposes the definition and development of the next-generation EO data processing chain, based on a novel flight segment architecture that moves optimised key EO data processing elements from the ground segment to on-board the satellite, with the aim of delivering the EO products to the end user with very low latency (quasi-real-time). EO-ALERT achieves, globally, latencies below five minutes for EO products delivery, reaching latencies below 1 minute in some scenarios. The proposed architecture solves the above challenges through a combination of innovations in the on-board elements of the data chain and the communications. Namely, the architecture introduces innovative technological solutions, including on-board reconfigurable data handling, on-board image generation and processing for the generation of alerts (EO products) using Artificial Intelligence (AI), on-board data compression and encryption using AI, high-speed on-board avionics, and reconfigurable high data rate communication links to ground, including a separate chain for alerts with minimum latency and global coverage. The paper presents the proposed architecture, its performance and hardware, considering two different user scenarios; ship detection and extreme weather observation/nowcasting. The results show that, when implemented using COTS components and available communication links, the proposed architecture can deliver alerts to ground with latency lower than five minutes, for both SAR and Optical missions, demonstrating the viability of the EOALERT concept and architecture. The paper also discusses the implementation on an avionics test bench for testing the architecture with real EO data, with the aim of demonstrating that it can meet the requirements of the considered scenarios in terms of detection performance and provides technologies at a high TRL (4-5). When proven, this will open unprecedented opportunities for the exploitation of civil EO products, especially in latency sensitive scenarios, such as disaster management

    EO-ALERT: A Novel Architecture for the Next Generation of Earth Observation Satellites Supporting Rapid Civil Alerts

    Get PDF
    The EO-ALERT project proposes the definition and development of the next-generation Earth Observation (EO) data processing chain, based on a novel flight segment architecture that moves opti-mised key EO data processing elements from the ground segment to on-board the satellite, with the aim of delivering EO products to the end user with very low latency. EO-ALERT achieves, globally, latencies below five minutes for EO products delivery, and below 1 minute in some scenarios. The proposed archi-tecture combines innovations in the on-board elements of the data chain and the communications, namely: on-board reconfigurable data handling, on-board image generation and processing for the generation of alerts (EO products) using Artificial Intelligence (AI), on-board AI-based data compression and encryption, high-speed on-board avionics, and reconfigurable high data rate communication links to ground, including a separate chain for alerts with minimum latency and global coverage. This paper pre-sents the proposed architecture, its performance and hardware, considering two different user scenarios: ship detection and extreme weather nowcasting. The results show that, when implemented using COTS components and available communication links, the proposed architecture can deliver alerts to ground with latency below five minutes, for both SAR and Optical missions, demonstrating the viability of the EO-ALERT concept

    A Novel Satellite Architecture for the Next Generation of Earth Observation Satellites Supporting Rapid Alerts

    Get PDF
    The EO-ALERT European Commission H2020 project proposes the definition, development, and verification and validation through ground hardware testing, of a next-generation Earth Observation (EO) data processing chain. The proposed data processing chain is based on a novel flight segment architecture that moves EO data processing elements traditionally executed in the ground segment to on-board the satellite, with the aim of delivering EO products to the end user with very low latency. EO-ALERT achieves, globally, latencies below five minutes for EO products delivery, and below one minute in realistic scenarios. The proposed EO-ALERT architecture is enabled by on-board processing, recent improvements in processing hardware using Commercial Off-The-Shelf (COTS) components, and persistent space-to-ground communications links. EO-ALERT combines innovations in the on-board elements of the data chain and the communications, namely: on-board reconfigurable data handling, on-board image generation and processing for the generation of alerts (EO products) using Machine Learning (ML) and Artificial Intelligence (AI), on-board AI-based data compression and encryption, high-speed on-board avionics, and reconfigurable high data rate communication links to ground, including a separate chain for alerts with minimum latency and global coverage. This paper presents the proposed architecture, its hardware realization for the ground testing in a representative environment and its performance. The architecture’s performance is evaluated considering two different user scenarios where very low latency (almost-real-time) EO product delivery is required: ship detection and extreme weather monitoring/nowcasting. The hardware testing results show that, when implemented using COTS components and available communication links, the proposed architecture can deliver alerts to the end user with a latency below five minutes, for both SAR and Optical missions, demonstrating the viability of the EO-ALERT architecture. In particular, in several test scenarios, for both the TerraSAR-X SAR and DEIMOS-2 Optical Very High Resolution (VHR) missions, hardware testing of the proposed architecture has shown it can deliver EO products and alerts to the end user globally, with latency lower than one-point-five minutes
    corecore